Edit vocabulary

Folder Mandatory
Identifier Mandatory
Label Mandatory
Base URI Optional
Registration status Mandatory
Type Mandatory Common
Numeric concept identifiers Mandatory
Optional
Definition Optional
Version Optional
Source Optional
License Optional
 

Bound elements for concepts

Element Type Status
coreCityOf Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
20 Oct 2013
hasDistrict Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
20 Oct 2013
inCountry Vocabulary
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
29 Aug 2014
owl:sameAs Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
30 Sep 2013
skos:broader Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
30 Sep 2013
skos:closeMatch Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
30 Sep 2013
skos:exactMatch Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
30 Sep 2013
skos:narrower Quantitative
Released
  • Step 1
  • Step 2
  • Step 3
  • Step 4
  • Step 5
17 Sep 2015

Add new data elements

Mandatory
Mandatory
Optional
Optional (forcefully equal to identifier in this vocabulary)
 

Vocabulary concepts

13,394 concepts found, displaying 1,301 to 1,320.First6263646566676869Last
Id Label Status Status Modified Notation
DE001D00105 Köpenick Nord Quick edit Valid 2016-01-06 DE001D00105
DE001D00106 Marzahn Nord Quick edit Valid 2016-01-06 DE001D00106
DE001D00107 Marzahn Mitte Quick edit Valid 2016-01-06 DE001D00107
DE001D00108 Marzahn Süd Quick edit Valid 2016-01-06 DE001D00108
DE001D00109 Hellersdorf Nord Quick edit Valid 2016-01-06 DE001D00109
DE001D00110 Hellersdorf Ost Quick edit Valid 2016-01-06 DE001D00110
DE001D00111 Hellersdorf Süd Quick edit Valid 2016-01-06 DE001D00111
DE001D00112 Biesdorf Quick edit Valid 2016-01-06 DE001D00112
DE001D00113 Kaulsdorf Quick edit Valid 2016-01-06 DE001D00113
DE001D00114 Mahlsdorf Quick edit Valid 2016-01-06 DE001D00114
DE001D00115 Malchow, Wartenberg und Falkenberg Quick edit Valid 2016-01-06 DE001D00115
DE001D00116 Neu-Hohenschönhausen Nord Quick edit Valid 2016-01-06 DE001D00116
DE001D00117 Neu-Hohenschönhausen Süd Quick edit Valid 2016-01-06 DE001D00117
DE001D00118 Alt-Hohenschönhausen Nord Quick edit Valid 2016-01-06 DE001D00118
DE001D00119 Alt-Hohenschönhausen Süd Quick edit Valid 2016-01-06 DE001D00119
DE001D00120 Fennpfuhl Quick edit Valid 2016-01-06 DE001D00120
DE001D00121 Alt-Lichtenberg Quick edit Valid 2016-01-06 DE001D00121
DE001D00122 Frankfurter Allee Süd Quick edit Valid 2016-01-06 DE001D00122
DE001D00123 Neu-Lichtenberg Quick edit Valid 2016-01-06 DE001D00123
DE001D00124 Friedrichsfelde Nord Quick edit Valid 2016-01-06 DE001D00124
CSV Import

The CSV file should contain a header row for element names and data rows for concepts.
It is strongly recommended to use an exported CSV file as a template for bulk editing. Columns and rows can be added to or deleted from the template file.
A concept can be ignored by prepending a double-slash '//' to the concept row in the CSV
    Notes:
  • If the header row contains unknown elements the import will aborted and data will be rolled back
  • Erroneous concept rows are ignored, valid data rows are still imported
  • Successful import cannot be undone (unless "undo checkout" is performed)
  • If a concept with the same identifier already exists in the vocabulary it will be overwritten
  • "Purge Vocabulary" option deletes all the vocabulary concepts before import
Note
  • With this operation, contents of RDF file will be imported into vocabulary folder.
  • Only a working copy can be updated with a RDF file upload.
  • If user select "Purge Per Predicate" option. All seen predicates will be removed from vocabulary.
  • If user select "Purge All Vocabulary Data" option. All data will be removed from vocabulary.
  • Once import is successful, operation cannot be undone. If an error occurs during import, then all data will be rolled back.
In this case, existing vocabulary information will be updated with information from imported concepts.
In this case, predicates of existing concepts will be replaced with the imported predicates.
In this case, all existing concepts will be removed and the imported concepts will be added.
In this case, all imported concepts will be removed from the vocabulary.
How to handle missing concepts?